
Computer Architecture, Operating Systems, and Networks:
Handin #7

Nicklas Blom: 20093011/au282254
Anders Alnor: 201804681/au611509
Casper S: 201805311/au602242

Aarhus Universitet — April 4, 2020

Prime numbers are among the most fascinating mathematical objects and there are still a lot of
unanswered questions about them. One of the common intuitions about them is that they are
distributed “like random numbers” unless there is a simple reason against it. Here, we would like
to test this intuition. For instance, the only even prime number is 2 which means that no prime
number will have 4, 6, or 8 as their last digit (in decimal) and the only prime number with 2 as its
last digit is 2 itself. Similarly, there is only one prime number that ends with digit 5 (the number 5
itself). However, we cannot think of a simple reason why a prime number should not end in digits 1,
3, 7, or 9. So if our intuition is correct, then the prime numbers ending in each of these digits should
be more or less evenly distributed. Here, you will write a program to test this intuition. We have
seen how using multiple threads we can greatly speed up the running time of computational tasks.
However, a very big challenge is that changing a global variable or object using multiple threads
can cause race conditions where the changes applied by one thread overwrite the changes done by
another thread. In this hand in, you will use non-blocking compare and swap instructions to avoid
race conditions. Since this solution crucially relies on instructions supported by the hardware, you
will need to implement parts of it in assembly language.

The compare and swap technique we will use to avoid threads overwriting each others’ work,
is as described in the hand-in instructions, through an atomic swap using the lock cmpxchg16b
instruction.

Part I

The Code
1 The C Code
All our code is based on the template starting points from the hand-in instructions. Let’s begin by exam-
ining out main C file, the one called cmp_swap_template.c.

1 #include <pthread.h>
2 #include <stdlib.h>
3 #include <unistd.h>
4 #include <stdio.h>
5

6 // C has no boolean type so we define it.
7 #define true 1
8 #define false 0
9 // We define a boolean to be of type ’short int’

10 typedef short bool;
11

1

12 /* We will count prime numbers up to this value
13 Start small for testing, then increase to make sure that
14 when computing with one thread the program takes about
15 10 seconds, otherwise, the noise in the time calculation
16 might cancel out any meaningful pattern.
17 */
18 #define MAX 10000000
19

20 int tnum; // The number of threads
21

22 /* We will need to maintain the number of primes of a particular
23 type.
24 */
25 typedef struct ptypes_st {
26 int n1;
27 int n3;
28 int n7;
29 int n9;
30 } ptypes_t;
31

32 /* Or you can do:
33 typedef struct ptypes_st {
34 int types[4];
35 } ptypes_t;
36 */
37

38

39 /* Here we need to define another struct to make the
40 compare and swap work.
41 In particular, we need a struct that is a combination of a counter and ptypes_t* type.
42 We need another global variable of that type.
43

44 FILL HERE!!
45 */
46 typedef struct pair_st {
47 long counter;
48 ptypes_t* dataPointer;
49 } pair_t;
50

51 pair_t* global_pair;
52

53

54 //datastructure to be parsed into the thread_function
55 typedef struct threadData_st {
56 int lNumber;
57 int uNumber;
58 } threadData_t;
59

60

61 /* We will dynamically allocate an array of pthread_t objects
62 Thus, "threads" will be an array of pthread_t objects.
63 */
64 pthread_t* threads;
65

66 /* A rather slow way to test if a number if prime
67 Don’t change this function
68 */
69 bool isPrime(long n){
70 if (n==1) return false;
71 long test=2;
72 while (test*test <= n) {
73 if (n%test == 0) return false;
74 test++;
75 }
76 return true;
77 }
78

79 /* An external function written in assembly that does
80 compare and swap for us.
81

82 It accepts three parameters of some yet unknown type that need to be
83 defined somewhere.

2

84 For the documentation of the function, see the assembly file.
85 Remember to pay attention to the order by which the parameters are passed
86 in System V ABI
87 */
88 extern int my_cmpr_swap(pair_t* old, pair_t* cur, pair_t* mod);
89

90

91 void* thread_function(threadData_t* arg){
92 /* Here we loop over all the integers in the range 1−MAX that are assigned
93 to us (the current thread).
94 if we find a problem number i then we have to atomically
95 update the total number of prime numbers of particular type.
96 */
97 threadData_t data = *arg;
98 int lower = data.lNumber;
99 int upper = data.uNumber;

100

101 ptypes_t* temp = malloc(sizeof(ptypes_t));
102 temp−>n1 = 0;
103 temp−>n3 = 0;
104 temp−>n7 = 0;
105 temp−>n9 = 0;
106

107 int i;
108 for(i=lower ; i<upper ; i++){
109 if (isPrime(i)) {
110 int value = i%10;
111 if(value == 1) {
112 temp−>n1++;
113 continue;
114 }
115 if(value == 3) {
116 temp−>n3++;
117 continue;
118 }
119 if(value == 7) {
120 temp−>n7++;
121 continue;
122 }
123 if(value == 9) {
124 temp−>n9++;
125 continue;
126 }
127 }
128 }
129

130

131 pair_t* localCopy = malloc(sizeof(pair_t));
132

133 pair_t* modifiedObject = malloc(sizeof(pair_t));
134

135 int j = 0;
136 while(j == 0){
137

138 localCopy−>counter = global_pair−>counter;
139 localCopy−>dataPointer = global_pair−>dataPointer;
140

141 ptypes_t* swap = malloc(sizeof(ptypes_t));
142 swap−>n1 = temp−>n1 + localCopy−>dataPointer−>n1;
143 swap−>n3 = temp−>n3 + localCopy−>dataPointer−>n3;
144 swap−>n7 = temp−>n7 + localCopy−>dataPointer−>n7;
145 swap−>n9 = temp−>n9 + localCopy−>dataPointer−>n9;
146 modifiedObject−>counter = 1 + localCopy−>counter;
147 modifiedObject−>dataPointer = swap;
148

149 j = my_cmpr_swap(localCopy, global_pair, modifiedObject);
150

151 free(localCopy−>dataPointer);
152 }
153

154 free(temp);
155 free(localCopy);

3

156 free(modifiedObject);
157 }
158

159 int main(int argc, char **args){
160 // Initialize the global variable
161 ptypes_t* startingPoint = malloc(sizeof(ptypes_t));
162 startingPoint−>n1 = 0;
163 startingPoint−>n3 = 0;
164 startingPoint−>n7 = 0;
165 startingPoint−>n9 = 0;
166

167

168 if (argc != 2) {
169 printf("You need to specify the number of threads.\n");
170 exit(−1);
171 }
172 tnum=atoi(args[1]);
173 if (tnum <1) tnum=1;
174 /* tnum is now the number of threads...
175 fill here!
176 */
177

178 float divisor = MAX/(float)tnum;
179 int upper = 0;
180 threadData_t* dataSet = malloc(tnum*sizeof(threadData_t));
181

182

183 /* Probably we need to do a bit more work here ...
184 Since we will need to define one more global variable.
185 */
186 global_pair = malloc(sizeof(pair_t));
187 global_pair−>counter = 0;
188 global_pair−>dataPointer = startingPoint;
189

190 // An array of threads.
191 pthread_t* threads = malloc(tnum*sizeof(pthread_t));
192

193 int i;
194 for (i=0; i<tnum ; i++){
195 // Spawn the i−th thread.
196 int lower = upper;
197 upper = divisor*(i+1);
198 dataSet[i].lNumber = lower;
199 dataSet[i].uNumber = upper;
200 int code = pthread_create(&threads[i], NULL, thread_function, &dataSet[i]);
201 if (code) {
202 printf("Something went wrong, aborting. \n");
203 exit(−1);
204 }
205 }
206

207 // We need to wait for the threads to finish their work.
208 for (i=0; i<tnum; i++){
209 pthread_join(threads[i], NULL);
210 }
211 free(dataSet);
212 free(threads);
213

214 //To avoid having to follow global_pair’s pointer to the dataPointer every time we just make a results pointer.
215 ptypes_t* resultsFinal = global_pair−>dataPointer;
216 long int result = (resultsFinal−>n1 + resultsFinal−>n3 + resultsFinal−>n7 + resultsFinal−>n9);
217 printf("The result was %ld primes numbers ending with 1,3,7 or 9 in the range of [0,9999999].\n", result);
218 printf("Primes numbers ending with 1: %d \n.", resultsFinal−>n1);
219 printf("Primes numbers ending with 3: %d \n.", resultsFinal−>n3);
220 printf("Primes numbers ending with 7: %d \n.", resultsFinal−>n7);
221 printf("Primes numbers ending with 9: %d \n.", resultsFinal−>n9);
222 return 0;
223 }

To break this down into more understandable chunks, let’s start by looking at main and following along
with normal program execution.
First, we create a starting ptypes pointer to give to our global pair later. This will only be a starting point,

4

since once the first thread runs its swap, this data will no longer be needed, but we require an initial state
for now.
Skipping the parts that are no different to our last assignment, moving on to line 185, we now initiate the
global pair that all our threads will be dealing with. Initialising its counter to 0 and setting the dataPointer
to our newly created starting point of all 0s.
Between line 194 and 205 we set up the threadData that each thread will be given, which is the upper
and lower bound for their computation and we then spawn all these threads, with the thread_function in
which all the magic happens.

Finally, in the end, we wait for all the threads to finish, free the last bits of information we couldn’t
free while we still had running threads and print the output.

Now of course we still need to discuss the primary part of the program; The thread function. 91.
Firstly, I will note that while the function call to create the threads expect the thread_function to take
void* as its argument, we instead specify that we want threadData*. This will make the compiler show a
warning, but not an error. We can do this, since void* is just any memory location anyway, so we’re just
narrowing it down. Conceptually a little bit like subclassing, even though that’s of course not what it is
since C is not object oriented and has no concept of a class like that.
With that out of the way let’s see what the function does. Initially, we set up some data. Extract the passed
along upper and lower bounds, and create a temp ptypes, where we’ll locally count the number of primes
we find ending with each of the checked digits. We then perform the actual checks, updating our local
temp struct. Finally, now that the local temp struct contains the number of primes for this threads’ range,
we can attempt to add it to the global count. We do this by first creating a local copy of the global pair, and
then adding our temp values to what we see in this local copy. All this goes to a swap structure. Finally,
we add 1 to the counter signifying that we have have modified the pair, and add the new counter and
swap struct to a pair we call modifiedObject. We run our assembly code, which checks if the local copy is
still the same as the global pair, and if it is, it means that no other thread has made a swap while these
computations were happening, so we can swap our modified object for the global pair. If our assembly
instruction returns false however, indicating that the local and global copy were different, no swap occurs,
and all the local copy is reset to the global, and we construct a new swap and modified object trying over
again until it works.
When we finally make the swap successfully, we free all the resources we no longer need; The local copy,
the modifiedObject and the temp. - However, if the swap does not work, we in fact also perform a free,
clearing away just the dataPointer of the localCopy. Since the swap wasn’t successful, we know that what-
ever this pointer is referencing has already been invalidated by another thread, so we shouldn’t cling on
to the local copy either.

2 The Assembly Code
Now let’s have a look at the assembly instructions we call within the thread_function

1 .text
2 .global my_cmpr_swap
3

4

5 # Parameters:
6 # rdi: old status
7 # rsi: cur status
8 # rdx: mod status
9 #

10 # We want to use "lock cmpxchg16b (reg)" instruction
11 # where reg is some register.
12 # cmpxchg16b: Compares rdx:rax (as a 128 bit integer) with the 128
13 # bit integer starting at address reg.
14 # We denote this 128 bit integer by m128.
15 # If rdx:rax equals m128, then the instruction sets the Z flag

5

16 # and copies rcx:rbx (as a 128 bit integer) into m128.
17 # otherwise, it clears the Z flag and copies the m128 into
18 # the registers rdx:rax.
19 #
20 # VERY IMPORTANT!!! Remember that intel is Little Endian!
21 #
22 # This means, the first 64 bits at address reg correspond
23 # to the lower half (or the lowest 64 bits) of m128!
24 # This means, when comparing rdx:rax as a 128 bit integer to
25 # m128, rax is compared to the 64 bit integer at (reg)
26 # and rdx is compared to the 64 bit integer at (reg+8).
27 # Similarly, when rcx:rbx is copied into m128,
28 # rbx is copied into the 64 bit integer starting at (reg)
29 # and rcx is copied into the 64 bit integer at (reg+8)
30

31 my_cmpr_swap:
32 # First we save rbx,
33 # since rbx needs to be used and by
34 # calling conventions, it is our job to save and restore it
35 pushq %rbx
36

37 # you need to figure out which reg to use and how to
38 # set up registers rdx:rax, and rcx:rbx
39 movq (%rdx), %rbx
40 movq 8(%rdx), %rcx
41 movq (%rdi), %rax
42 movq 8(%rdi), %rdx
43

44 lock cmpxchg16b (%rsi)
45

46 # If Z flag is set are successful so we return 1.
47 # else we return 0
48 # Could avoid jmp entirely with conditional mov logic
49 jz success
50 movq $0,%rax
51 jmp end
52

53 success:
54 movq $1,%rax
55

56 end:
57 popq %rbx
58 ret

The comments in the code are already fairly explicit, but to elaborate a bit more what we do, is simply
to set up the registers with the correct information from memory. Since RSI holds the starting address to
the current global object in memory, we set up everything else to compare and swap against that memory
location. We do this by copying the local copy (old status) into the compared registers, i.e. from the
memory pointed to by RDI to RDX:RAX. We also need to set up the swap registers, which will be the data
that will be put into the memory location if RDX:RAX=(RSI). We do this by copying the memory pointed
to by RDX into RCX:RBX.
In the actual code, we do this in reverse order, starting with setting up the swap and then setting up the
compare - this is to not overwrite the rdx register, which originally holds the memory address of the mod-
ified object, but after set up will be made to hold the contents of the local copy (old status).

Once everything is set up properly we just call the instruction lock cmpxchg16b on the RSI memory
location and the swap is performed if the compared values are the same.

After that we just set the boolean result in RAX depending on the Z flag and clean up after ourselves,
returning to the C code.

6

Part II

Tests
1 Testing The Assembly
To test that our assembly code works as we believe it does, we’ve written an extensive test program that
uses the function in a variety of different swapping conditions, printing the output along the way to make
potential bug hunting easier, and finally doing a bunch of point checks on the results to see that they are
all as we expect. The testing program is as follows:

1 #include <stdio.h>
2

3 #define true = 1
4 #define false = 0
5

6 typedef short bool;
7

8 typedef struct test_st {
9 long a;

10 long b;
11 } test_t;
12

13 extern int my_cmpr_swap(test_t *old, test_t *cur, test_t *mod);
14

15 void main(){
16 test_t t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12;
17

18 t1.a=1;
19 t1.b=2;
20

21 t2.a=1;
22 t2.b=2;
23

24 t3.a=100;
25 t3.b=200;
26

27 t4.a = 1;
28 t4.b = 2;
29

30 t5.a = 1;
31 t5.b = 2;
32

33 t6.a = 100;
34 t6.b = 200;
35

36 t7.a = 1;
37 t7.b = 2;
38

39 t8.a = 5;
40 t8.b = 10;
41

42 t9.a = 100;
43 t9.b = 200;
44

45 t10.a = 50;
46 t10.b = 250;
47

48 t11.a = 50;
49 t11.b = 250;
50

51 t12.a = 912;
52 t12.b = 42;
53

54 bool result[4] = {my_cmpr_swap(&t1, &t2, &t3), my_cmpr_swap(&t6,&t5,&t4), my_cmpr_swap(&t7,&t8,&t9), my_cmpr_swap(&t11,&t10,&t12)};
55

56 char* resultString[4];
57 //Assembling the string for true and false
58 for (int i = 0; i < 4; i++) {

7

59 if(result[i]==1){
60 resultString[i] = "true";
61 continue;
62 }
63 else if (result[i] == 0){
64 resultString[i] = "false";
65 continue;
66 }
67 else resultString[i] = "error!";
68 }
69

70 printf("The function returned %s.\n", resultString[0]);
71 printf("t1 is: (%ld,%ld)\n", t1.a,t1.b);
72 printf("t2 is: (%ld,%ld)\n", t2.a,t2.b);
73 printf("t3 is: (%ld,%ld)\n \n", t3.a,t3.b);
74 printf("Changing the order, to compare t3 with t2 and swap with t1 \n (Using clones (t4,t5,t6) to not change results from before) \n We get result: %s \n", resultString[1]);
75 printf("t4 is: (%ld,%ld)\n", t4.a, t4.b);
76 printf("t5 is: (%ld,%ld)\n", t5.a, t5.b);
77 printf("t6 is: (%ld,%ld)\n \n", t6.a, t6.b);
78 printf("And just to make sure the false run before didn’t swap the two identical structs, we try with all different inputs on a false \n We get result: %s \n", resultString[2]);
79 printf("t7 is: (%ld,%ld)\n", t7.a, t7.b);
80 printf("t8 is: (%ld,%ld)\n", t8.a, t8.b);
81 printf("t9 is: (%ld,%ld)\n \n", t9.a, t9.b);
82 printf("Finally we perform one last true swap to ensure the swapping order is correct \n We get result: %s \n", resultString[3]);
83 printf("t10 is: (%ld,%ld)\n", t10.a, t10.b);
84 printf("t11 is: (%ld,%ld)\n", t11.a, t11.b);
85 printf("t12 is: (%ld,%ld)\n \n", t12.a, t12.b);
86

87 //Few crash tests for a quick overview
88 if (
89 resultString[0] == "true" &&
90 resultString[1] == "false" &&
91 resultString[2] == "false" &&
92 resultString[3] == "true" &&
93 t2.a == t3.a && t2.b == t3.b &&
94 t5.a != t6.a && t5.b != t6.b &&
95 t7.a != t8.a && t7.b != t8.b &&
96 t6.a != t8.a && t6.b != t8.b &&
97 t12.a == t10.a && t12.b == t10.b
98) {
99 printf("Yay! It seems to be working! \n \n");

100 } else {
101 printf("Think you better check your code \n \n");
102 }
103 }

Running the test program, we get the output:

Based on this, we believe to have a good understanding of the assembly code, and feel confident it
works as we expect.

8

2 Testing The Main Program
A key part of this task is to avoid the threads overwriting each others’ work. To verify that the program
works as we expect we run it with various numbers of threads and see if we get consistent and correct
output. We also time the code, to see how our locking mechanism affects the performance scaling with
the number of threads.

All of the following is performed on an Intel Core i7 4770HQ with 4 physical and 8 logical cores

9

As we can see, we get consistent results for all the executions, no matter the number of threads,
signifying that the program functions correctly. We have also validated that the number of primes we’ve
computed is correct, though it should be noted that we aren’t counting 2 and 5 since they only occur once,
so the real number of primes is 2 higher than our program says as a total in all cases, but this is intentional
behaviour. As expected, the distribution of primes ending in digits 1, 3, 7 or 9 is also fairly uniform.
The performance scaling with the number of threads is nearly as good as in our last hand-in where we
had no need for a locking mechanism. In fact, going from 1 to 2 threads still yields ≈ 59% speed increase,
which is almost identical to the last hand-in. Though going from 2 to 4 yields a speedup of "only" ≈ 79%,
where it was ≈ 81% in the last hand-in; Though still a relatively minor difference. Thus we can conclude
that the threads do not spend a significant amount oftime waiting on a swap.

10

Finally, we’ll just run some quick tests with different MAX values, to verify we also get the correct
number of primes for other boundaries.

This should be compared against the official results here:

Thoughh again, our program does not count 2 and 5 so we are two below the official results in all
cases.
Aside from that however, we can see that our program produces the correct results in all the tests.

11

3 Checking For Memory Leaks
Last but not least, we’ll use Valgrind to check that we don’t have any memory leaks.

Looks like we have no un-accounted for memory and that all is good.

12

